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The asymptotic laws of damping of perturbations induced in a sonic stream of dissipating 

gas by bodies of revolution were derived in paper Cl]. These laws were shown to be dif- 

ferent from those obtaining when the medium viscosity and thermal conductivity coeffi- 

cients are assumed to be zero [2 to 51. The conclusions arrived at in [l] were based on 
series expansions of the unknown functions with respect to two small independent para- 

meters, which characterize the longitudinal and the transverse components of the per- 

turbation velocity. The exact relationship between these two small parameters could 
not be established with the aid of the first approximation theory which yields an estimate 

only of this relationship. This difficulty is eliminated in the second approximation the- 

ory- 

1, Analysis of aqu&ifonr. Let x and F denote the axes of a cylindrical coor- 

dinate system, U, and U, the velocity vector components along these axes, p the den- 

sity, p the pressure, S the specific entropy, r the temperature, xr the viscosity coef- 
ficient, h, the secondary viscosity coefficient, and k the thermal conductivity coeffi- 
cient. We shall write the Navier-Stokes and the heat transfer continuity equations on 
the assumption of the gas flow symmetry relative to the X-axis in the form [6] 

Entropy and temperature may be eliminated from this system by using the following 
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thermodynamic relaty*nships [7] 

ds = w (dp - aadp), dT = & (xdp - Gdp) 

(u=+(g),, a%=(-$),, IL;, x2) (I.51 

Here, I/= l/D denotes the specific volume, a the thermal expansion coefficient, a 
the adiabatic velocity of sound, c, the specific heat at constant pressure and cv the 
specific heat at constant volume. When solving problems of gas dynamics, the medium 

viscosity and thermal conductivity coefficients are often taken to be dependent on 

temperature only. This assumption will be used in the following text. Pressure and den- 
sity are selected as the independent thermodynamic variables, the remaining ones being 

functions of these two in accordance with Formulas (1.5). 

We shall assume that in the area of space under consideration the values of all gas 
parameters differ only insignificantly from those in the free steady-state stream. We 
also assume that the gas particles velocity coincides in magnitude with the velocity of 

sound, and is directed along the X-axis. Parameters of the unperturbed medium will be 

denoted by an asterisk, and the characteristic length along the X-axis by .l, . Using the 
results of [l] we introduce the following independent dimensionless variables and expan- 

sions of the unknown functions : 

J = Lx’ I r L- (L / A) r’ (1.6) 

v, = a* [l + E (vxl + 6uxz + . ..)I. v, = &Au* (url + ti~,.~ + . ..) 

P = F’ 11 + E (PI + Q, + . ..)I. p = p” 11 + & (p1 + 6p, i- . ..>I 

Here, C, 6 and n are numerical parameters considerably smaller than unity. The 
substitution of relationships (1.6) into the system of Eqs,(l. 1) to (1.4) yields three dimen- 

sionless coefficients. viz. Revnolds and P&let numbers 

N fJ*a*L 
Rel = - , 

iI* 
NRe2 = e, Npe = 

lidwp*L 
k 

* 

These numbers are computed from values of the gas-dynamical functions of the free 

sonic stream. We assume the reciprocal values of these numbers to be of the same order 
of magnitude, and considerably smaller than unity. In the derivation of approximate 
equations we shall retain in all relationships terms of the first and second order only, 
neglecting those of a higher order of smallness. 

Substituting Formulas (1.6) into the continuity equation we obtain ( ‘) 

& (PI + bd + 8 $g + 6; (pa + v,z)+;A2 (* + +) = 0 (1.7) 

The projection of the Navier-Stokes Eq. (1.2) on to the X-axis yields 

2 v,1+ ( ah1 
-&?Pl) + e(Pl+ K+g- + 

+&(u+* P,)-g-&q&o (1.8) 

l ) The total Reynolds number NR~ appearing in this equation is associated with the 

*) Primes over independent dimensionless variables are omitted here and in the follow- 
ing text. 
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so-called “longitudinal viscosity” 
2 4 1 1 

-=--+ Nnez 
NRC! 3 *Rel 

and the reciprocal of this number is. by virtue of the above assumptions considerably 

smaller than unity. 

Projecting the Navier-Stokes Eqs. (1.3) on to the 7 -axis we derive the following 
relationship : 

%I 
-+ 

P* 
al: 

-~+8(PlfUxl)~+8(~+~~)- 
p*a*a ar 

1 @%I 1 a a~,, av,, 
--- -_ 

N,, axar + N,, ax ( ar-- ax 1 
=o (1.9) 

Equating the principal terms of Eqs. (1.7) and (1.8) to zero, and integrating the ex- 
pressions thus obtained, we have 

P1= 3 P1= - V,l (1.10) 

These formulas make it possible to simplify equations of the second approximation 

b~(~z+~~~)=2ev,~~--A~( J!gL+>) (1.11) 

6 (42 + * P2) = g-+ (1.12) 

Let US consider Eq. (1.9). A substitution into it of the functional relationship defined 
by Expressions (1.10) and (1.12) shows that the flows under consideration are irrotational 
not only in the first [l].but also in the second approximation, 

aa,, %.t %!a %2 

a? =- ax 9 ar=- ax 
(1.13) 

When considering the heat transfer equation it is necessary to take into account the 
effects of dissipative factors directly in the first approximation. A preliminary transfor- 

mation of this equation is required in order to eliminate quantities of the first order of 
smallness related to mass and impulse transfer. We denote the right-hand side of Eq. 

(1.4) by L(k, h&), and by L,(i,, A,) and L,(h,, 1,) the right-hand sides of 
Eqs. (1.2) and (1.3). respectively, omitting their first terms. The required relationship 

may be conveniently expressed by 

P[(vx~-.~)~+v,v,(~+~)+(v~~-as)~-~]= 

= v&c (L h2) + VrLr @l, b) - F L@, h, A21 (2.14) 

The velocity of sound a appears in the coefficients of this equation. its expansion 
into a Taylor series is mcst easily carried out, if pressure and entropy are taken as inde- 
pendent variables, because the variation of the latter in a perturbed flow field is of a 
higher order of smallness than that of variation of all of the remaining thermodynamic 
functions. Taking note of this we write 

(1.1s) 

ozo,+ L?- 
( 1 ape s (P -In*) i $ ($$), (1) - L$ + ($+ - s*) i- . . * 

The variation of entropy is readily determined from Eq. (1.4) in which the principal 
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terms only are to be retained. In terms of initial physical variables 

as 1 (‘p*‘* d”T 
~__ _ --- __ 
3% NFv T, 3x2 

Integration of the latter equality, with Formulas (1.5) and (1.10) taken into account 
yields E 

s=s* I-- 
i 

(‘p* (x* --1) 5 

iv PC Q&T* l3X 1 
We introduce the following dimensionless coefficients 

which define the adiabatic compresSion of the gas, and coefficient 

1123 = 
cph--1) an 

uaT (--I 8s p 

(l.lGj 

(1.17) 

which shows the rate of increase of the velocity of sound with increasing entropy at con- 

stant pressure. bet the Prandtl number 
NP, 

A,,.=r 
RI? 

denote the ratio of the P&let and Reynolds numbers which in accordance with the 

assumptions made above is of the order of unity. With these notations the expansion 
(1.l.J) of the velocity of sound may be expressed thus 

a = a, [ 1- 8 (ml, - 1) vxl - 1/ze2 (3nIe2 + m2,) u,.~ - 86 (ml* - 1) u,2 + 

We shall simplify now Eq. (1.14). In addition to coefficients (1.16) and (1.17) we 
shall use the following dimensionless thermodynamic parameters : 

m 
4 

= E_ rn5 = 
cp (x- 1)2 

-- 

cP asa2 

and 

pa z 
pa2 (x - 1) i3 xk 

p3 = 
-- 

k aT apaa s 

which characterize the dependence of the medium viscosity and thermal conductivity 
coefficients on temperature. We shall assume the order of magnitude of all coefficients 

ml to ms, and ~1 to k3 to be equal to unity. We shall present the results of transfor- 
mation of Eq. (1.14) directly in its final form. going over from the gas density and pres- 
sure to projections on the X- and Y-axes of the perturbed velocity vector using relation- 

ships (1. IO) and (1.13). This, of course, is not the most general form of the sought equa- 
tion, it is. nevertheless, adequate for the objectives set out, and is comparatively simple. 

Thus, we have 

av,l 2eml,vxl as - A2 ?g ( _g+!--(1+5&f$+ 
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+ ea (2m*a+ mz,) Ux? 

+ eAa [2v,, f$ + w%*---1h ($L+~)]_*Aa(J?g+~)- 

(v1-2++~-p3-m5, va=2+p1+m4-2ml, vs=2+p2-p8-Zm3) 

A further transformation of Eq. (1.18) may be achieved by various means, the seclec- 

tion of which is dependent on the relative magnitude of the small parameters 8. 6, A , 
and NE\ appearing in it. An analysis of equations of the first approximation was given 

in paper [ 11. On the basis of results of that paper we shall construct in the second approx- 
imation a pattern of ilow past a body of revolution placed in a sonic stream of a dissi- 

pative gas. 

2. The rrymptotic lrwr of perturbation damping. When thevelocity 
field at considerable distances from the body of finite dimensions is considered. it can 
be assumed that E < Aa - NRe- 1. Assuming for simplicity’s sake that 

As+._ j++L 
Re ( Pr ) 

we derive from (1.18) the missing equation of the first approximation [l] 

-+Z$ %cl 
ax= 

++o (2.U 

which together with Eq. (1.13) constitutes a closed system. Its solution, which defines the 

asymptotic laws of perturbation damping at a distance from a body of circular cross sec- 

tion, is of the form 
ccl= r-%(E), %1= F%(E), E = gy-% (2.2) 

In Formulas (2.2) the exponent n = * /3 . If we denote the Euler gamma-function by 

r(a) , and the confluent hypergeometric function by P(B .y .q) , then [l] 

f1 = Cl p ta/3, l/3; ?) -* rl”“@ c4/3, 5/3; 77)1 (2.3) 

(2.4) 

The integral of (2.2) to (2.4) corresponds to a point source at the coordinate origin. 

with a sonic stream uniform at infinity flowing past it. Constant ~1 is proportional to 
the source power Q . As previously stated, the theory of the first approximation allows 

to obtain only the estimate S/A =A of the ratio of the two small parameters c and A. 
In order to obtain the exact relationship between these two parameters, it is necessary 
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to consider the velocity field pattern in the second approximation. 

We simplify Eq.(l, 18) with the aid of Formulas (2.1) and (2.Q retaining terms of 

one order of smalfness only 

All coefficients of the derived equation must be of the order of 8 . Hence, we con- 
clude A -., ~‘!a, 6 c- ~“2 and NRC,-1 - dig. These relationships are in full accord 

with previous results. Numerical values of coefficients in Eq.(2.5) are the simplest when 

Substituting in Eq.(2.5) the second derivative aaZJ,.. /ax2 of function U,~(X.?) 
for the expression in brackets, we find 

(2.6) 

Eq.(2.6) together with Eq,(l. 13) constitutes a closed system which is used in the deter- 
mination of projections on the x - and r-axes of components of the perturbed velocity 

vector, We note that the homogeneous equations corresponding to this system coincide 
exactly with the first Eqs.(l. 13) and with Eq,(2.1) for functiorls UX1(x,I*) and Url(~,r) 

of the first approximation. 
This feature makes the integration of the second of Eqs.(L. 13) and of Eq.(2.6) con- 

siderably easier. 

Having obtained the solution of these, we find functions PR(X,r) and PS(x,?) from 
the following relationships : 

P*G2 Pa = p* 

which follow from (1.11) and (1.12). We shall now proceed with the integration of the 

second of Eqs.(l. 13) and of Eq.(2,6). The combination appearing in the right-hand side 

of Eq. (2.6) avs, 
--+ 

@%* 
UXl ax -=+$(rl~+~) 

ati 

where function /l(s) is specified by relarionships(2.3) and (2.4). It follows from this 
that magnitudes ZJ.&x,r) and U,,(X,?“) may,as previously, be sought in the form of 

(2.2) with n=2. Functions f, (5) and g S (5) satisfy the ordinary differential equa- 

The integrating factor of the first of Eqs,(Z. 7) is 5 . Noting this we derive, after some 

simple transformations 
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In order to satisfy the natural symmetry condition. of the-stream U,(X,F) -0, when 

7” 0, and x e 0, the constant of integration is selected equal to zero. The area down- 

stream of the body is occupied by a vortex trail, therefore the two components U,(X,I”) 

and U,(X,P) of the perturbed velocity vector may, generally speaking, have singularities 
when r -* 0, and x > 0, in spite of the absence of such in the first approximation theory. 

We shall denote byfao( 5) and gz( 5) functions which satisfy the homogeneous equations 

corresponding to system (2.8). Components of the perturbed velocity vector derived with 
the aid of these functions must vanish at in~ni~,ex~ept in the area of the vortex trail. 
The solution of the homogeneous system of Eqs.(2.8) which satisfies the latter condition 
may be easily written now with the use of results of paper [ 11. and when r* 0 it is in 

fact a regular one for any values of x# 0 , 
With an accuracy of the order of the arbitrary factor we have 

f2” = +- ) de g2” = x 

Hence, in accordance with rules of confluent hypergeometric function integration, we 
have 

(2.9) 

The derived solution, as well as integraf(8.3) provides a simple interpretation, namely, 

it corresponds to a dipole located in a uniform stream of gas particles with their critical 
velocity at infinity, The constant c2 is proportional to the moment of the dipole. 

Thus the complete system of Eqs.(2.8) yields a solution which defines the field of 
velocities generated by the perturbation field resulting from viscous interaction between 

the dipole and the free sonic stream. 
Solution (2.9) may, of course, be obtained directly. The initial system of two Eqs,(2.8) 

is equivalent to a single second order differential equation of function & (5 ) which is 

of the form (2.10) 

Having substituted the independent variable in accordance with (2.4). and substituted 

iz” (E) = r)‘iQ# (q) into the corresponding homogeneous Eq.(2.10). we find that func- 
tion $ (‘rj) satisfies the folIowing confluent hypergeometric equation : 

written in its canonical form [8]. The two linearly independent integrals of this equation 
are known, and constitute the (2.9) representation of function ,&O( 5) . 

The knowledge of the linearly independent integrals of the homogeneous equation cor- 
responding to (2.10) makes it possible not only to confirm the validity of Formulas (2.9), 
but also to find a general solution for the initial system of Eqs.(2.8). The easiest way of 
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achieving this is to resort to the standard method of variation of constants. 

We note, first of all, that each of the linear combinations of hypergeometric functions 
appearing in square brackets in Expressions (2.3) and (2.9) is proportional to the so-called 

‘f’-function [8] originally introduced into mathematical physics by Tricomi. 
The asymptotic representation of the Y-function does not contain exponential terms, 

when TJ-+&co. 

Consequently, we shall select the fundamental system ,of solutions of the corresponding 
homogeneous Eq. (2.10) the following integrals: 

f,“’ =L IpP (4/s, 213; q), f,“” = Vpe~Y (- 213, 213; - q) 
The Wronskian of the selected fundamental system of solutions is of the form 

With the known expression of function fa( 5) we are at once able to write down the 
formula defining ga (5) . Such a formula would. however, be somewhat cumbersome. 
We may present function g, (5) in a more meaningful form by passing from the initial 

system (2.8) to the second order differential equation which defines the latter as follows: 

=o&)=-220(%)-+%-$ (2.12) 

The fundamental system of solutions of the cor- 
responding homogeneous Eq.(2.12) is written down 

as follows 

-$’ = VVS, l/3; rl) 

@ = en y (-V3, l/s - q) 

with variable r) defined, as previously by equality 

(2.4) and by Wronskian 

Fig. 1 

We finally obtain 

CL ga” (Eb- ]} 

d% + ga02 (E) \ @ f.;;;s) d% (2.13) 
-50 -CO 

Properties of functions !I (E), g1 (&), ho (&) and gso (E) were analyzed in [I]. 
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Functions J$*( 5) and g,“( 5) which ark particular solutions of the nonhomogeneous 

Eqs.(Z. 10) and (2.12), respectively, are shown on Fig. 1. A direct integration of the ini- 

tial system of differential Eqs.(2.8) with constant 

cr = 2V/’ r (s/s) 13r (V&l-’ 

was resorted to for the plotting of these functions. 

Conversion with the use of explicit Expressions (2.11) and (2.13) presents considerable 
difficulties. 

The asymptotic expansion of functions here considered defines the behavior of com- 
ponents of the gas particles velocity vector in the neighborhood of the axis of symmetry 

r=Oandx<O when g-$-m. 

The perturbations induced in a uniform sonic stream by the source and the dipole do 
not, as previously shown, have singularities all along axis P = 0, except at point X= 0 , 

In order to prove this we shall use Formulas (2.3) and (2.9) together with the asymp- 

totic representation of the Y-function 181, We have 

The terms of the integral in equality (2.13) tend to vanish when 5 -( -m as 

therefore the particular solutions &‘( 5 ) and Qn*( 5 ) of nonhomogeneous Esq.(2.10) 

It follows from this that ~Ru~ations of the l~gitudinal component of the velocity 
vector which are due to interaction of the dipole and the source fade with X* - =.and 
r = 0 more rapidly than the perturbations in an intrinsic dipole field. As regards the 

velocity transverse component, the viscous interaction of the two singularities generates 

perturbations of the same order as those induced by the dipole, 
We shall derive the asymptotic expansion of all functions when 5 * + m . It appears 

that the mode of the tendency to zero of functions fr (E), g, (E), fss (k) and gs@ (E) 
is the same as that of relationships (2,14), namely 

fsO = 9r wd 1 
I- P/d 

csT+***, 
4 

gso =-- E&i- (%I cs 
I- (W 

++*.* 

The behavior of particular solutions fn* ( 5 ) and gn*( 5 ) when 5 + + 00 is as follows : 

In %+[flz(%)d%+ l *st gh* = ;+‘s”f:t%w%+ l . l (2.15) 
-co -CO 
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Therefore, in the neighborhood of the axis of symmetry r-' 0 and X > 0, the velocity 

components have singularities v, - z--3 in P and U, - rr-2r-1. The appearance of 

these is due to the vortex trail, always present in the downstream flow past a body. But 

the velocity field pattern in vortex trail zone is essentially due to the interaction of the 
tangential, and not of the normal components of the viscous stress tensor [6] . On the 

other hand, when the approximate relationship (1.18) is derived from the Navier-Stokes 
initial equations, then the terms associated with normal stresses and the longitudinal 
component of the heat flux vector are the predominant factors. Therefore, the relation- 

ships of (1.18) and Eqs.(2.1) and (2.6) of the first and second order approximations 

derived from these are not valid in the narrow zone downsream of the body. Furthermore, 

if the integrals of solutions of higher orders of approximation did not contain any singu- 
larities whatsoever, it would mean that it is in fact possible to derive a solution of the 
Navier-Stokes system of equations for a flow past a body of finite dimensions without 
the formation of a vortex trail. 

We note that Formulas (2.15) relate to perturbations generated in a uniform stream by 

a slender body of revolution of cross section O(x) differing from the constant value by 

const x -1 ,whenx-++a . In other words, in the theory under consideration the “dis- 

placement” in the trail downstream of the body is approximated by 

which conforms with the results of [l& Constants bl and b, in this equality may be 

expressed in terms of the previously introduced constant cl , while their values are inde- 

pendent of the value of constant On. 
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